澳门博彩官网

转载  更新时间:2018年04月13日 16:52:43   作者:denny402   我要评论

这篇文章主要为大家详细介绍了pytorch构建网络模型的4种方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。

假设构建一个网络模型如下:

卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层

首先导入几种方法用到的包:

import torch
import torch.nn.functional as F
from collections import OrderedDict

第一种方法

# Method 1 -----------------------------------------
class Net1(torch.nn.Module):
  def __init__(self):
    super(Net1, self).__init__()
    self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
    self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
    self.dense2 = torch.nn.Linear(128, 10)
  def forward(self, x):
    x = F.max_pool2d(F.relu(self.conv(x)), 2)
    x = x.view(x.size(0), -1)
    x = F.relu(self.dense1(x))
    x = self.dense2(x)
    return x
print("Method 1:")
model1 = Net1()
print(model1)

这种方法比较常用,早期的教程通常就是使用这种方法。

第二种方法

# Method 2 ------------------------------------------
class Net2(torch.nn.Module):
  def __init__(self):
    super(Net2, self).__init__()
    self.conv = torch.nn.Sequential(
      torch.nn.Conv2d(3, 32, 3, 1, 1),
      torch.nn.ReLU(),
      torch.nn.MaxPool2d(2))
    self.dense = torch.nn.Sequential(
      torch.nn.Linear(32 * 3 * 3, 128),
      torch.nn.ReLU(),
      torch.nn.Linear(128, 10)
    )
  def forward(self, x):
    conv_out = self.conv1(x)
    res = conv_out.view(conv_out.size(0), -1)
    out = self.dense(res)
    return out
print("Method 2:")
model2 = Net2()
print(model2)

这种方法利用torch.nn.Sequential()容器进行快速搭建,模型的各层被顺序添加到容器中。缺点是每层的编号是默认的阿拉伯数字,不易区分。

第三种方法:

# Method 3 -------------------------------
class Net3(torch.nn.Module):
  def __init__(self):
    super(Net3, self).__init__()
    self.conv=torch.nn.Sequential()
    self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
    self.conv.add_module("relu1",torch.nn.ReLU())
    self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
    self.dense = torch.nn.Sequential()
    self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
    self.dense.add_module("relu2",torch.nn.ReLU())
    self.dense.add_module("dense2",torch.nn.Linear(128, 10))
  def forward(self, x):
    conv_out = self.conv1(x)
    res = conv_out.view(conv_out.size(0), -1)
    out = self.dense(res)
    return out
print("Method 3:")
model3 = Net3()
print(model3)

这种方法是对第二种方法的改进:通过add_module()添加每一层,并且为每一层增加了一个单独的名字。 

第四种方法:

# Method 4 ------------------------------------------
class Net4(torch.nn.Module):
  def __init__(self):
    super(Net4, self).__init__()
    self.conv = torch.nn.Sequential(
      OrderedDict(
        [
          ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
          ("relu1", torch.nn.ReLU()),
          ("pool", torch.nn.MaxPool2d(2))
        ]
      ))
    self.dense = torch.nn.Sequential(
      OrderedDict([
        ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
        ("relu2", torch.nn.ReLU()),
        ("dense2", torch.nn.Linear(128, 10))
      ])
    )
  def forward(self, x):
    conv_out = self.conv1(x)
    res = conv_out.view(conv_out.size(0), -1)
    out = self.dense(res)
    return out
print("Method 4:")
model4 = Net4()
print(model4)

是第三种方法的另外一种写法,通过字典的形式添加每一层,并且设置单独的层名称。

完整代码:

import torch
import torch.nn.functional as F
from collections import OrderedDict
# Method 1 -----------------------------------------
class Net1(torch.nn.Module):
  def __init__(self):
    super(Net1, self).__init__()
    self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
    self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
    self.dense2 = torch.nn.Linear(128, 10)
  def forward(self, x):
    x = F.max_pool2d(F.relu(self.conv(x)), 2)
    x = x.view(x.size(0), -1)
    x = F.relu(self.dense1(x))
    x = self.dense2()
    return x
print("Method 1:")
model1 = Net1()
print(model1)

# Method 2 ------------------------------------------
class Net2(torch.nn.Module):
  def __init__(self):
    super(Net2, self).__init__()
    self.conv = torch.nn.Sequential(
      torch.nn.Conv2d(3, 32, 3, 1, 1),
      torch.nn.ReLU(),
      torch.nn.MaxPool2d(2))
    self.dense = torch.nn.Sequential(
      torch.nn.Linear(32 * 3 * 3, 128),
      torch.nn.ReLU(),
      torch.nn.Linear(128, 10)
    )
  def forward(self, x):
    conv_out = self.conv1(x)
    res = conv_out.view(conv_out.size(0), -1)
    out = self.dense(res)
    return out
print("Method 2:")
model2 = Net2()
print(model2)

# Method 3 -------------------------------
class Net3(torch.nn.Module):
  def __init__(self):
    super(Net3, self).__init__()
    self.conv=torch.nn.Sequential()
    self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
    self.conv.add_module("relu1",torch.nn.ReLU())
    self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
    self.dense = torch.nn.Sequential()
    self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
    self.dense.add_module("relu2",torch.nn.ReLU())
    self.dense.add_module("dense2",torch.nn.Linear(128, 10))
  def forward(self, x):
    conv_out = self.conv1(x)
    res = conv_out.view(conv_out.size(0), -1)
    out = self.dense(res)
    return out
print("Method 3:")
model3 = Net3()
print(model3)

# Method 4 ------------------------------------------
class Net4(torch.nn.Module):
  def __init__(self):
    super(Net4, self).__init__()
    self.conv = torch.nn.Sequential(
      OrderedDict(
        [
          ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
          ("relu1", torch.nn.ReLU()),
          ("pool", torch.nn.MaxPool2d(2))
        ]
      ))
    self.dense = torch.nn.Sequential(
      OrderedDict([
        ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
        ("relu2", torch.nn.ReLU()),
        ("dense2", torch.nn.Linear(128, 10))
      ])
    )
  def forward(self, x):
    conv_out = self.conv1(x)
    res = conv_out.view(conv_out.size(0), -1)
    out = self.dense(res)
    return out
print("Method 4:")
model4 = Net4()
print(model4)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python定时器使用示例分享

    python定时器使用示例分享

    这篇文章主要介绍了python定时器使用示例,需要的朋友可以参考下
    2014-02-02
  • Python数据结构之Array用法实例

    Python数据结构之Array用法实例

    这篇文章主要介绍了Python数据结构之Array用法实例,较为详细的讲述了Array的常见用法,具有很好的参考借鉴价值,需要的朋友可以参考下
    2014-10-10
  • Python网络爬虫项目:内容提取器的定义

    Python网络爬虫项目:内容提取器的定义

    本篇文章主要介绍了Python网络爬虫项目,这能有效的节省程序员的时间,具有一定的参考价值,感兴趣的小伙伴们可以参考一下。
    2016-10-10
  • python cx_Oracle的基础使用方法(连接和增删改查)

    python cx_Oracle的基础使用方法(连接和增删改查)

    这篇文章主要给大家介绍了关于python cx_Oracle的基础使用方法,其中包括连接、增删改查等基本操作,并给大家分享了python 连接Oracle 乱码问题的解决方法,需要的朋友可以参考借鉴,下面随着小编来一起学习学习吧。
    2017-11-11
  • 分分钟入门python语言

    分分钟入门python语言

    分分钟学会一门语言之Python篇,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • 玩转python爬虫之正则表达式

    玩转python爬虫之正则表达式

    这篇文章主要介绍了python爬虫的正则表达式,正则表达式在Python爬虫是必不可少的神兵利器,本文整理了Python中的正则表达式的相关内容,感兴趣的小伙伴们可以参考一下
    2016-02-02
  • Python实现快速排序算法及去重的快速排序的简单示例

    Python实现快速排序算法及去重的快速排序的简单示例

    quick sort快速排序是一种再基础不过的排序算法,使用Python代码写起来相当简洁,这里我们就来看一下Python实现快速排序算法及去重的快速排序的简单示例:
    2016-06-06
  • Python更新数据库脚本两种方法及对比介绍

    Python更新数据库脚本两种方法及对比介绍

    这篇文章给大家介绍了Python更新数据库脚本两种方法及数据库查询三种方式,然后在文章下面给大家介绍了两种方式对比介绍,非常不错,感兴趣的朋友参考下吧
    2017-07-07
  • 浅谈Python爬取网页的编码处理

    浅谈Python爬取网页的编码处理

    下面小编就为大家带来一篇浅谈Python爬取网页的编码处理。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-11-11
  • python3 模拟登录v2ex实例讲解

    python3 模拟登录v2ex实例讲解

    下面小编就为大家带来一篇python3 模拟登录v2ex实例讲解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-07-07

最新评论